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The Sliding Window DFT

The Sliding Window Discrete Fourier Transform (SW-
DFT) computes a time-frequency representation of a
signal, and is useful for analyzing signals with local
periodicities. Shortly described, the SW-DFT takes
sequential DFTs of a signal multiplied by a rectangu-
lar sliding window function, where the window func-
tion is only nonzero for a short duration. Let x =
[x0, x1, . . . , xN−1] be a length N signal, then for length
n ≤ N windows, the SW-DFT of x is:

ak,p = 1√
n

n−1∑
j=0

xp−n+1+jω
−jk
n

k = 0, 1, . . . , n− 1
p = n− 1, n, . . . , N − 1 (1)

where ωn = exp(i2πn ) = cos(2π
n ) + i sin(2π

n ). The SW-
DFT results in a n×P = N−n+1 array, where n cor-
responds to frequencies and P corresponds to window
position. A useful way to think about the SW-DFT is
a multivariate time-series, where each time-series cor-
responds to a Fourier frequency (2πk

n ).

The Fast Sliding Window DFT

Computing the SW-DFT by definition (Equation 1)
takes Pn2 operations. We can easily reduce this to
O(Pn log(n)) by replacing the DFT in each window
position with a Fast Fourier Transform (FFT). We fur-
ther reduce the computational complexity to O(Pn)
using the Fast SW-DFT algorithm (Richardson and
Eddy (2017)). The Fast SW-DFT algorithm uses the
tree data-structure of the Cooley-Tukey FFT to remove
repeated calculations in overlapping windows.

Figure: The Fast SW-DFT algorithm for two adjacent windows.
Window one shows the intermediate FFT calculations for
[x0, . . . , x7], and window two shows the same calculations for
[x1, . . . , x8]. The solid arrows in window two indicate calculations
already made in window one, and the dashed arrows are new
calculations. The new calculations in window two are exactly the
size of a binary tree, which grows linearly with window size.

Sliding Window DFT for Local Periodic Signals

The Sliding Window DFT is a useful tool for analyzing data with local periodic signals (Richardson and Eddy
(2018)). Since SW-DFT coefficients are complex-numbers, we analyze the squared modulus of these coefficients

|ak,p|2 = Re(ak,p)2 + Im(ak,p)2

Since the squared modulus SW-DFT coefficients are large when the window is on a periodic part of the signal:

Left: Length 128 signal x, where xt = 2 cos(2π·t·16
128 ) · I[32,94](t). Right: Squared Modulus coefficients for the SW-DFT of x.

Modeling a Local Signal

We use the following model for a local periodic signal:

yt = A cos(2πtF
N

+ φ) · IS,S+L−1(t)

where t = 0, . . . , N −1. This model has 5 parameters:

1 S: Start of local signal. S ∈ {0, 1, . . . , N − 2}.
2 L: Length of local signal. L ∈ {1, 2, . . . , N − S}
3 A: Amplitude. A ∈ [0,∞]
4 F : Complete cycles in a length N signal. F ∈ [0,∞]
5 φ: Phase, φ ∈ [0, 2π]

The SW-DFT of our model for local signals is:

ak,p = 1√
n

n−1∑
j=0

A cos(2π(p̂ + j)F
N

+ φ) · I[S,S+L−1](p̂ + j)ω−jkn

where p̂ = p − n + 1. This is easily extended to R
local signals, using the linearity property of the Fourier
transform.

Estimating a Local Signal

Let x = [x0, x1, . . . , xN−1] be a length N signal. The
SW-DFT of x is:

bk,p = 1√
n

n−1∑
j=0

xp−n+1+jω
−jk
n (2)

We want the least-squares parameter estimates

arg min
S,L,A,F,φ

n−1∑
k=0

N−1∑
p=n−1

(bk,p − ak,p)2 (3)

Using the following trigonometric identity:

cos(x + y) = cos(x) cos(y) + sin(x) sin(y)

We can linearize the optimization over A and φ:

arg min
S,L,F

(arg min
A,φ

n−1∑
k=0

N−1∑
p=n−1

(bk,p − β1C1,k,p − β2C2,k,p)2)

Where C1,k,p and C2,k,p are complex-valued vectors (see
Richardson and Eddy (2018) for more details).

Leakage

Leakage occurs when local signal frequency is not one
of the Fourier frequencies (or, the number of complete
cycles in a length n window is not an integer). In this
case, the largest squared modulus coefficients occur at
frequencies closest to the true frequency:
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Squared Modulus SW-DFT coefficients for frequencies with 2 and
3 complete cycles, where true frequency ranges from 2− 2.9.

Ringing

Discontinuous signals lead to a phenomenon called
ringing. For local signals, ringing occurs when the
window is only on part of the local periodic signal,
corresponding to states 2 and 4 in the figure below:

Signal enters window

Window covers only the signal 

Signal exits window

Window covers part of signal  Window covers part of signal 

STATE 3

STATE 2 STATE 4

STATE 1 STATE 5

The canonical “trapezoid” shape of a squared modulus SW-DFT
coefficient for a local periodic signal.

Conclusions

The SW-DFT is a useful tool for local periodic signals.
This poster shows the linear-time Fast SW-DFT algo-
rithm, a model for local periodic signals, a trick for es-
timating parameters of the model, and the “important-
for-data-analysis” concepts: Leakage and Ringing.
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