Skip to content

Quora Question Pairs

Business Understanding

Quora is a place to gain and share knowledge—about anything. It’s a platform to ask questions and connect with people who contribute unique insights and quality answers. This empowers people to learn from each other and to better understand the world.


Over 100 million people visit Quora every month, so it's no surprise that many people ask similarly worded questions. Multiple questions with the same intent can cause seekers to spend more time finding the best answer to their question, and make writers feel they need to answer multiple versions of the same question. Quora values canonical questions because they provide a better experience to active seekers and writers, and offer more value to both of these groups in the long term.


Data Credit: Kaggle - Quora

Business Objectives and Constraints

  • Identify which questions asked on Quora are duplicates of questions that have already been asked.
  • This should be useful to provide answers to questions that have already been answered.
  • Output a probability of a pair of questions to be duplicates, so that any threshold can be chosen.
  • The cost of a mis-classification is very high.
  • Interpretability is partially important.
  • No strict latency concerns.

Machine Learinng Problem Statement

  • Type of Machine Leaning Problem : It is a binary classification problem, for a given pair of questions we need to predict if they are duplicate or not.

  • Performance Metric :

## Importing css
from IPython.core.display import HTML
css = lambda : HTML(open("Assets/css/custom.css", "r").read())
css()
## Importing libraries
import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import time
import spacy
import sys
import os
import re
import gc
import distance

import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls

from os import path
from PIL import Image
from dataprep.eda import create_report
from subprocess import check_output
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from bs4 import BeautifulSoup
from sklearn.manifold import TSNE
from sklearn.preprocessing import normalize
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from tqdm import tqdm
from thefuzz import fuzz
# Import the Required lib packages for WORD-Cloud generation
# https://stackoverflow.com/questions/45625434/how-to-install-wordcloud-in-python3-6
from wordcloud import WordCloud, STOPWORDS

# exctract word2vec vectors
# https://github.com/explosion/spaCy/issues/1721
# http://landinghub.visualstudio.com/visual-cpp-build-tools


import sqlite3
from sqlalchemy import create_engine # database connection
import csv
import os
import datetime as dt

from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import normalize
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.manifold import TSNE
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, log_loss
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
from scipy.sparse import hstack
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold 
from collections import Counter, defaultdict
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
import math
from sklearn.metrics import normalized_mutual_info_score
from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import cross_val_score
from sklearn.linear_model import SGDClassifier
from mlxtend.classifier import StackingClassifier

from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision_recall_curve, auc, roc_curve

%matplotlib inline
## Defining constants
title = "Quora Question Pairs"
raw_data_file_path = f"data/{title}/01_raw/train.csv"
raw_data_dataprep_report_path = f"data/{title}/08_reporting/raw_data_dataprep.html"
nlp_features_train = f"data/{title}/04_feature/nlp_features_train.csv"
fe_without_preprocessing_train_path = f"data/{title}/04_feature/df_fe_without_preprocessing_train.csv"

Data Overview

df = pd.read_csv(raw_data_file_path)
display(df.head())
report = create_report(df, title=title, progress=False)
report.save(raw_data_dataprep_report_path)
id qid1 qid2 question1 question2 is_duplicate
0 0 1 2 What is the step by step guide to invest in sh... What is the step by step guide to invest in sh... 0
1 1 3 4 What is the story of Kohinoor (Koh-i-Noor) Dia... What would happen if the Indian government sto... 0
2 2 5 6 How can I increase the speed of my internet co... How can Internet speed be increased by hacking... 0
3 3 7 8 Why am I mentally very lonely? How can I solve... Find the remainder when [math]23^{24}[/math] i... 0
4 4 9 10 Which one dissolve in water quikly sugar, salt... Which fish would survive in salt water? 0
Report has been saved to data/Quora Question Pairs/08_reporting/raw_data_dataprep.html!

info_df = df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 404290 entries, 0 to 404289
Data columns (total 6 columns):
 #   Column        Non-Null Count   Dtype 
---  ------        --------------   ----- 
 0   id            404290 non-null  int64 
 1   qid1          404290 non-null  int64 
 2   qid2          404290 non-null  int64 
 3   question1     404289 non-null  object
 4   question2     404288 non-null  object
 5   is_duplicate  404290 non-null  int64 
dtypes: int64(4), object(2)
memory usage: 18.5+ MB

df.describe()
id qid1 qid2 is_duplicate
count 404290.000000 404290.000000 404290.000000 404290.000000
mean 202144.500000 217243.942418 220955.655337 0.369198
std 116708.614503 157751.700002 159903.182629 0.482588
min 0.000000 1.000000 2.000000 0.000000
25% 101072.250000 74437.500000 74727.000000 0.000000
50% 202144.500000 192182.000000 197052.000000 0.000000
75% 303216.750000 346573.500000 354692.500000 1.000000
max 404289.000000 537932.000000 537933.000000 1.000000

Exploratory Data Analysis

Number of unique questions

qids = pd.Series(df['qid1'].tolist() + df['qid2'].tolist())
unique_qs = len(np.unique(qids))
qs_morethan_onetime = np.sum(qids.value_counts() &gt; 1)
print ('Total number of  Unique Questions are: {}\n'.format(unique_qs))
print ('Number of unique questions that appear more than one time: {} ({}%)\n'.format(qs_morethan_onetime,round(qs_morethan_onetime/unique_qs*100,2)))
print ('Max number of times a single question is repeated: {}\n'.format(max(qids.value_counts()))) 

q_vals=qids.value_counts()
q_vals=q_vals.values

to_plot = pd.Series([unique_qs , qs_morethan_onetime], index=  ["unique_questions" , "Repeated Questions"])
_ = to_plot.plot(kind='bar', title="Plot representing unique and repeated questions", figsize=(16,8), rot = 0)
Total number of  Unique Questions are: 537933

Number of unique questions that appear more than one time: 111780 (20.78%)

Max number of times a single question is repeated: 157


No description has been provided for this image

Checking for Duplicates

#checking whether there are any repeated pair of questions
pair_duplicates = df[['qid1','qid2','is_duplicate']].groupby(['qid1','qid2']).count().reset_index()
print ("Number of duplicate questions",(pair_duplicates).shape[0] - df.shape[0])
Number of duplicate questions 0

Number of occurrences of each question

plt.figure(figsize=(16, 8))
plt.hist(qids.value_counts(), bins=160)
plt.yscale('log')
plt.title('Log-Histogram of question appearance counts')
plt.xlabel('Number of occurences of question')
plt.ylabel('Number of questions')
print ('Maximum number of times a single question is repeated: {}\n'.format(max(qids.value_counts()))) 
Maximum number of times a single question is repeated: 157


No description has been provided for this image

Checking for NULL values

#Checking whether there are any rows with null values
nan_rows = df[df.isnull().any(1)]
nan_rows
id qid1 qid2 question1 question2 is_duplicate
105780 105780 174363 174364 How can I develop android app? NaN 0
201841 201841 303951 174364 How can I create an Android app? NaN 0
363362 363362 493340 493341 NaN My Chinese name is Haichao Yu. What English na... 0
# Filling the null values with ' '
df = df.fillna('')
nan_rows = df[df.isnull().any(1)]
nan_rows
id qid1 qid2 question1 question2 is_duplicate

Feature Engineering

Let us now construct a few features like:

  • freq_qid1 = Frequency of qid1's
  • freq_qid2 = Frequency of qid2's
  • q1len = Length of q1
  • q2len = Length of q2
  • q1_n_words = Number of words in Question 1
  • q2_n_words = Number of words in Question 2
  • word_Common = (Number of common unique words in Question 1 and Question 2)
  • word_Total =(Total num of words in Question 1 + Total num of words in Question 2)
  • word_share = (word_common)/(word_Total)
  • freq_q1+freq_q2 = sum total of frequency of qid1 and qid2
  • freq_q1-freq_q2 = absolute difference of frequency of qid1 and qid2
if os.path.isfile(fe_without_preprocessing_train_path):
    df = pd.read_csv(fe_without_preprocessing_train_path, encoding='latin-1')
else:
    df['freq_qid1'] = df.groupby('qid1')['qid1'].transform('count') 
    df['freq_qid2'] = df.groupby('qid2')['qid2'].transform('count')
    df['q1len'] = df['question1'].str.len() 
    df['q2len'] = df['question2'].str.len()
    df['q1_n_words'] = df['question1'].apply(lambda row: len(row.split(" ")))
    df['q2_n_words'] = df['question2'].apply(lambda row: len(row.split(" ")))

    def normalized_word_Common(row):
        w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
        w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))    
        return 1.0 * len(w1 &amp; w2)
    df['word_Common'] = df.apply(normalized_word_Common, axis=1)

    def normalized_word_Total(row):
        w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
        w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))    
        return 1.0 * (len(w1) + len(w2))
    df['word_Total'] = df.apply(normalized_word_Total, axis=1)

    def normalized_word_share(row):
        w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
        w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))    
        return 1.0 * len(w1 &amp; w2)/(len(w1) + len(w2))
    df['word_share'] = df.apply(normalized_word_share, axis=1)

    df['freq_q1+q2'] = df['freq_qid1']+df['freq_qid2']
    df['freq_q1-q2'] = abs(df['freq_qid1']-df['freq_qid2'])

    df.to_csv(fe_without_preprocessing_train_path, index=False)

df.head()
id qid1 qid2 question1 question2 is_duplicate freq_qid1 freq_qid2 q1len q2len q1_n_words q2_n_words word_Common word_Total word_share freq_q1+q2 freq_q1-q2
0 0 1 2 What is the step by step guide to invest in sh... What is the step by step guide to invest in sh... 0 1 1 66 57 14 12 10.0 23.0 0.434783 2 0
1 1 3 4 What is the story of Kohinoor (Koh-i-Noor) Dia... What would happen if the Indian government sto... 0 4 1 51 88 8 13 4.0 20.0 0.200000 5 3
2 2 5 6 How can I increase the speed of my internet co... How can Internet speed be increased by hacking... 0 1 1 73 59 14 10 4.0 24.0 0.166667 2 0
3 3 7 8 Why am I mentally very lonely? How can I solve... Find the remainder when [math]23^{24}[/math] i... 0 1 1 50 65 11 9 0.0 19.0 0.000000 2 0
4 4 9 10 Which one dissolve in water quikly sugar, salt... Which fish would survive in salt water? 0 3 1 76 39 13 7 2.0 20.0 0.100000 4 2
print ("Minimum length of the questions in question1 : " , min(df['q1_n_words']))
print ("Minimum length of the questions in question2 : " , min(df['q2_n_words']))
print ("Number of Questions with minimum length [question1] :", df[df['q1_n_words']== 1].shape[0])
print ("Number of Questions with minimum length [question2] :", df[df['q2_n_words']== 1].shape[0])
Minimum length of the questions in question1 :  1
Minimum length of the questions in question2 :  1
Number of Questions with minimum length [question1] : 67
Number of Questions with minimum length [question2] : 24

word_share

plt.figure(figsize=(16,8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'word_share', data = df[0:])

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['word_share'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['word_share'][0:] , label = "0" , color = 'blue' )
plt.show()
No description has been provided for this image
  • The distributions for normalized word_share have some overlap on the far right-hand side, i.e., there are quite a lot of questions with high word similarity
  • The average word share and Common no. of words of qid1 and qid2 is more when they are duplicate(Similar)

word_Common

plt.figure(figsize=(12, 8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'word_Common', data = df[0:])

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['word_Common'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['word_Common'][0:] , label = "0" , color = 'blue' )
plt.show()
No description has been provided for this image

The distributions of the word_Common feature in similar and non-similar questions are highly overlapping

Text Preprocessing

  • Preprocessing:
    • Removing html tags
    • Removing Punctuations
    • Performing stemming
    • Removing Stopwords
    • Expanding contractions etc.
# To get the results in 4 decemal points
SAFE_DIV = 0.0001 
STOP_WORDS = stopwords.words("english")

def preprocess(x):
    x = str(x).lower()
    x = x.replace(",000,000", "m").replace(",000", "k").replace("′", "'").replace("’", "'")\
                           .replace("won't", "will not").replace("cannot", "can not").replace("can't", "can not")\
                           .replace("n't", " not").replace("what's", "what is").replace("it's", "it is")\
                           .replace("'ve", " have").replace("i'm", "i am").replace("'re", " are")\
                           .replace("he's", "he is").replace("she's", "she is").replace("'s", " own")\
                           .replace("%", " percent ").replace("₹", " rupee ").replace("$", " dollar ")\
                           .replace("€", " euro ").replace("'ll", " will")
    x = re.sub(r"([0-9]+)000000", r"\1m", x)
    x = re.sub(r"([0-9]+)000", r"\1k", x)


    porter = PorterStemmer()
    pattern = re.compile('\W')

    if type(x) == type(''):
        x = re.sub(pattern, ' ', x)


    if type(x) == type(''):
        x = porter.stem(x)
        example1 = BeautifulSoup(x)
        x = example1.get_text()


    return x

Fuzzy Features

Definition: - Token: You get a token by splitting sentence a space - Stop_Word : stop words as per NLTK. - Word : A token that is not a stop_word

Features: - cwc_min : Ratio of common_word_count to min lenghth of word count of Q1 and Q2 cwc_min = common_word_count / (min(len(q1_words), len(q2_words))

def get_token_features(q1, q2):
    token_features = [0.0]*10

    # Converting the Sentence into Tokens: 
    q1_tokens = q1.split()
    q2_tokens = q2.split()

    if len(q1_tokens) == 0 or len(q2_tokens) == 0:
        return token_features
    # Get the non-stopwords in Questions
    q1_words = set([word for word in q1_tokens if word not in STOP_WORDS])
    q2_words = set([word for word in q2_tokens if word not in STOP_WORDS])

    #Get the stopwords in Questions
    q1_stops = set([word for word in q1_tokens if word in STOP_WORDS])
    q2_stops = set([word for word in q2_tokens if word in STOP_WORDS])

    # Get the common non-stopwords from Question pair
    common_word_count = len(q1_words.intersection(q2_words))

    # Get the common stopwords from Question pair
    common_stop_count = len(q1_stops.intersection(q2_stops))

    # Get the common Tokens from Question pair
    common_token_count = len(set(q1_tokens).intersection(set(q2_tokens)))


    token_features[0] = common_word_count / (min(len(q1_words), len(q2_words)) + SAFE_DIV)
    token_features[1] = common_word_count / (max(len(q1_words), len(q2_words)) + SAFE_DIV)
    token_features[2] = common_stop_count / (min(len(q1_stops), len(q2_stops)) + SAFE_DIV)
    token_features[3] = common_stop_count / (max(len(q1_stops), len(q2_stops)) + SAFE_DIV)
    token_features[4] = common_token_count / (min(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
    token_features[5] = common_token_count / (max(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)

    # Last word of both question is same or not
    token_features[6] = int(q1_tokens[-1] == q2_tokens[-1])

    # First word of both question is same or not
    token_features[7] = int(q1_tokens[0] == q2_tokens[0])

    token_features[8] = abs(len(q1_tokens) - len(q2_tokens))

    #Average Token Length of both Questions
    token_features[9] = (len(q1_tokens) + len(q2_tokens))/2
    return token_features

# get the Longest Common sub string

def get_longest_substr_ratio(a, b):
    strs = list(distance.lcsubstrings(a, b))
    if len(strs) == 0:
        return 0
    else:
        return len(strs[0]) / (min(len(a), len(b)) + 1)

def extract_features(df):
    # preprocessing each question
    df["question1"] = df["question1"].fillna("").apply(preprocess)
    df["question2"] = df["question2"].fillna("").apply(preprocess)

    print("token features...")

    # Merging Features with dataset

    token_features = df.apply(lambda x: get_token_features(x["question1"], x["question2"]), axis=1)

    df["cwc_min"]       = list(map(lambda x: x[0], token_features))
    df["cwc_max"]       = list(map(lambda x: x[1], token_features))
    df["csc_min"]       = list(map(lambda x: x[2], token_features))
    df["csc_max"]       = list(map(lambda x: x[3], token_features))
    df["ctc_min"]       = list(map(lambda x: x[4], token_features))
    df["ctc_max"]       = list(map(lambda x: x[5], token_features))
    df["last_word_eq"]  = list(map(lambda x: x[6], token_features))
    df["first_word_eq"] = list(map(lambda x: x[7], token_features))
    df["abs_len_diff"]  = list(map(lambda x: x[8], token_features))
    df["mean_len"]      = list(map(lambda x: x[9], token_features))

    #Computing Fuzzy Features and Merging with Dataset

    # do read this blog: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
    # https://stackoverflow.com/questions/31806695/when-to-use-which-fuzz-function-to-compare-2-strings
    # https://github.com/seatgeek/fuzzywuzzy
    print("fuzzy features..")

    df["token_set_ratio"]       = df.apply(lambda x: fuzz.token_set_ratio(x["question1"], x["question2"]), axis=1)
    # The token sort approach involves tokenizing the string in question, sorting the tokens alphabetically, and 
    # then joining them back into a string We then compare the transformed strings with a simple ratio().
    df["token_sort_ratio"]      = df.apply(lambda x: fuzz.token_sort_ratio(x["question1"], x["question2"]), axis=1)
    df["fuzz_ratio"]            = df.apply(lambda x: fuzz.QRatio(x["question1"], x["question2"]), axis=1)
    df["fuzz_partial_ratio"]    = df.apply(lambda x: fuzz.partial_ratio(x["question1"], x["question2"]), axis=1)
    df["longest_substr_ratio"]  = df.apply(lambda x: get_longest_substr_ratio(x["question1"], x["question2"]), axis=1)
    return df
if os.path.isfile(nlp_features_train):
    df = pd.read_csv(nlp_features_train,encoding='latin-1')
    df.fillna('')
else:
    print("Extracting features for train:")
    df = pd.read_csv(raw_data_file_path)
    df = extract_features(df)
    df.to_csv(nlp_features_train, index=False)
df.head(2)
id qid1 qid2 question1 question2 is_duplicate cwc_min cwc_max csc_min csc_max ... ctc_max last_word_eq first_word_eq abs_len_diff mean_len token_set_ratio token_sort_ratio fuzz_ratio fuzz_partial_ratio longest_substr_ratio
0 0 1 2 what is the step by step guide to invest in sh... what is the step by step guide to invest in sh... 0 0.999980 0.833319 0.999983 0.999983 ... 0.785709 0.0 1.0 2.0 13.0 100 93 93 100 0.982759
1 1 3 4 what is the story of kohinoor koh i noor dia... what would happen if the indian government sto... 0 0.799984 0.399996 0.749981 0.599988 ... 0.466664 0.0 1.0 5.0 12.5 86 63 66 75 0.596154

2 rows × 21 columns

Word clouds

  • Creating Word Cloud of Duplicates and Non-Duplicates Question pairs
  • We can observe the most frequent occuring words
df_duplicate = df[df['is_duplicate'] == 1]
dfp_nonduplicate = df[df['is_duplicate'] == 0]

# Converting 2d array of q1 and q2 and flatten the array: like {{1,2},{3,4}} to {1,2,3,4}
p = np.dstack([df_duplicate["question1"], df_duplicate["question2"]]).flatten()
n = np.dstack([dfp_nonduplicate["question1"], dfp_nonduplicate["question2"]]).flatten()

print ("Number of data points in class 1 (duplicate pairs) :",len(p))
print ("Number of data points in class 0 (non duplicate pairs) :",len(n))

positive_text_file_path = 'data/Quora Question Pairs/04_feature/train_p.txt'
negative_text_file_path = 'data/Quora Question Pairs/04_feature/train_n.txt'

#Saving the np array into a text file
np.savetxt(positive_text_file_path, p, delimiter=' ', fmt='%s')
np.savetxt(negative_text_file_path, n, delimiter=' ', fmt='%s')
Number of data points in class 1 (duplicate pairs) : 298526
Number of data points in class 0 (non duplicate pairs) : 510054

# reading the text files and removing the Stop Words:
d = path.dirname('.')

textp_w = open(path.join(d, positive_text_file_path)).read()
textn_w = open(path.join(d, negative_text_file_path)).read()
stopwords = set(STOPWORDS)
stopwords.add("said")
stopwords.add("br")
stopwords.add(" ")
stopwords.remove("not")

stopwords.remove("no")
#stopwords.remove("good")
#stopwords.remove("love")
stopwords.remove("like")
#stopwords.remove("best")
#stopwords.remove("!")
print ("Total number of words in duplicate pair questions :",len(textp_w))
print ("Total number of words in non duplicate pair questions :",len(textn_w))
Total number of words in duplicate pair questions : 16109886
Total number of words in non duplicate pair questions : 33193130

Word Clouds generated from duplicate pair question's text

wc = WordCloud(background_color="white", max_words=len(textp_w), stopwords=stopwords)
wc.generate(textp_w)
print ("Word Cloud for Duplicate Question pairs")
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()
Word Cloud for Duplicate Question pairs

No description has been provided for this image

Word Clouds generated from non duplicate pair question's text

wc = WordCloud(background_color="white", max_words=len(textn_w),stopwords=stopwords)
# generate word cloud
wc.generate(textn_w)
print ("Word Cloud for non-Duplicate Question pairs:")
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()
Word Cloud for non-Duplicate Question pairs:

No description has been provided for this image

Pair plots

n = df.shape[0]
sns.pairplot(df[['ctc_min', 'cwc_min', 'csc_min', 'token_sort_ratio', 'is_duplicate']][0:n], hue='is_duplicate', vars=['ctc_min', 'cwc_min', 'csc_min', 'token_sort_ratio'])
plt.show()
No description has been provided for this image
# Distribution of the token_sort_ratio
plt.figure(figsize=(10, 8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'token_sort_ratio', data = df[0:] , )

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['token_sort_ratio'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['token_sort_ratio'][0:] , label = "0" , color = 'blue' )
plt.show()
No description has been provided for this image
plt.figure(figsize=(10, 8))

plt.subplot(1,2,1)
sns.violinplot(x = 'is_duplicate', y = 'fuzz_ratio', data = df[0:] , )

plt.subplot(1,2,2)
sns.distplot(df[df['is_duplicate'] == 1.0]['fuzz_ratio'][0:] , label = "1", color = 'red')
sns.distplot(df[df['is_duplicate'] == 0.0]['fuzz_ratio'][0:] , label = "0" , color = 'blue' )
plt.show()
No description has been provided for this image

TSNE

# Using TSNE for Dimentionality reduction for 15 Features(Generated after cleaning the data) to 3 dimention
from sklearn.preprocessing import MinMaxScaler

dfp_subsampled = df[0:5000]
X = MinMaxScaler().fit_transform(dfp_subsampled[['cwc_min', 'cwc_max', 'csc_min', 'csc_max' , 'ctc_min' , 'ctc_max' , 'last_word_eq', 'first_word_eq' , 'abs_len_diff' , 'mean_len' , 'token_set_ratio' , 'token_sort_ratio' ,  'fuzz_ratio' , 'fuzz_partial_ratio' , 'longest_substr_ratio']])
y = dfp_subsampled['is_duplicate'].values
tsne2d = TSNE(
    n_components=2,
    init='random', # pca
    random_state=101,
    method='barnes_hut',
    n_iter=1000,
    verbose=2,
    angle=0.5
).fit_transform(X)
[t-SNE] Computing 91 nearest neighbors...
[t-SNE] Indexed 5000 samples in 0.005s...
[t-SNE] Computed neighbors for 5000 samples in 0.289s...
[t-SNE] Computed conditional probabilities for sample 1000 / 5000
[t-SNE] Computed conditional probabilities for sample 2000 / 5000
[t-SNE] Computed conditional probabilities for sample 3000 / 5000
[t-SNE] Computed conditional probabilities for sample 4000 / 5000
[t-SNE] Computed conditional probabilities for sample 5000 / 5000
[t-SNE] Mean sigma: 0.116557
[t-SNE] Computed conditional probabilities in 0.130s
[t-SNE] Iteration 50: error = 85.3983765, gradient norm = 0.0928323 (50 iterations in 0.650s)
[t-SNE] Iteration 100: error = 70.7441177, gradient norm = 0.0130134 (50 iterations in 0.498s)
[t-SNE] Iteration 150: error = 68.7045746, gradient norm = 0.0077004 (50 iterations in 0.486s)
[t-SNE] Iteration 200: error = 67.7494354, gradient norm = 0.0055012 (50 iterations in 0.465s)
[t-SNE] Iteration 250: error = 67.2252350, gradient norm = 0.0041935 (50 iterations in 0.465s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 67.225235
[t-SNE] Iteration 300: error = 1.9825330, gradient norm = 0.0156138 (50 iterations in 0.454s)
[t-SNE] Iteration 350: error = 1.5351998, gradient norm = 0.0144627 (50 iterations in 0.445s)
[t-SNE] Iteration 400: error = 1.3278431, gradient norm = 0.0128098 (50 iterations in 0.440s)
[t-SNE] Iteration 450: error = 1.2114807, gradient norm = 0.0114405 (50 iterations in 0.449s)
[t-SNE] Iteration 500: error = 1.1379409, gradient norm = 0.0103406 (50 iterations in 0.448s)
[t-SNE] Iteration 550: error = 1.0874577, gradient norm = 0.0096972 (50 iterations in 0.444s)
[t-SNE] Iteration 600: error = 1.0505884, gradient norm = 0.0089717 (50 iterations in 0.448s)
[t-SNE] Iteration 650: error = 1.0232079, gradient norm = 0.0082849 (50 iterations in 0.448s)
[t-SNE] Iteration 700: error = 1.0022360, gradient norm = 0.0076192 (50 iterations in 0.450s)
[t-SNE] Iteration 750: error = 0.9860880, gradient norm = 0.0069277 (50 iterations in 0.447s)
[t-SNE] Iteration 800: error = 0.9734683, gradient norm = 0.0063558 (50 iterations in 0.453s)
[t-SNE] Iteration 850: error = 0.9637550, gradient norm = 0.0053249 (50 iterations in 0.455s)
[t-SNE] Iteration 900: error = 0.9566751, gradient norm = 0.0043437 (50 iterations in 0.457s)
[t-SNE] Iteration 950: error = 0.9512537, gradient norm = 0.0037357 (50 iterations in 0.458s)
[t-SNE] Iteration 1000: error = 0.9468948, gradient norm = 0.0032665 (50 iterations in 0.466s)
[t-SNE] KL divergence after 1000 iterations: 0.946895

df = pd.DataFrame({'x':tsne2d[:,0], 'y':tsne2d[:,1] ,'label':y})

# draw the plot in appropriate place in the grid
sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,palette="Set1",markers=['s','o'])
plt.title("perplexity : {} and max_iter : {}".format(30, 1000))
plt.show()
No description has been provided for this image
from sklearn.manifold import TSNE
tsne3d = TSNE(
    n_components=3,
    init='random', # pca
    random_state=101,
    method='barnes_hut',
    n_iter=1000,
    verbose=2,
    angle=0.5
).fit_transform(X)
[t-SNE] Computing 91 nearest neighbors...
[t-SNE] Indexed 5000 samples in 0.003s...
[t-SNE] Computed neighbors for 5000 samples in 0.262s...
[t-SNE] Computed conditional probabilities for sample 1000 / 5000
[t-SNE] Computed conditional probabilities for sample 2000 / 5000
[t-SNE] Computed conditional probabilities for sample 3000 / 5000
[t-SNE] Computed conditional probabilities for sample 4000 / 5000
[t-SNE] Computed conditional probabilities for sample 5000 / 5000
[t-SNE] Mean sigma: 0.116557
[t-SNE] Computed conditional probabilities in 0.114s
[t-SNE] Iteration 50: error = 86.3213348, gradient norm = 0.0852814 (50 iterations in 1.047s)
[t-SNE] Iteration 100: error = 69.4754181, gradient norm = 0.0074687 (50 iterations in 0.825s)
[t-SNE] Iteration 150: error = 67.7562256, gradient norm = 0.0038234 (50 iterations in 0.756s)
[t-SNE] Iteration 200: error = 67.1388702, gradient norm = 0.0025480 (50 iterations in 0.775s)
[t-SNE] Iteration 250: error = 66.7948914, gradient norm = 0.0019368 (50 iterations in 0.793s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 66.794891
[t-SNE] Iteration 300: error = 1.7247280, gradient norm = 0.0087369 (50 iterations in 0.845s)
[t-SNE] Iteration 350: error = 1.3098295, gradient norm = 0.0055429 (50 iterations in 1.030s)
[t-SNE] Iteration 400: error = 1.1212687, gradient norm = 0.0042167 (50 iterations in 1.072s)
[t-SNE] Iteration 450: error = 1.0208713, gradient norm = 0.0033299 (50 iterations in 1.073s)
[t-SNE] Iteration 500: error = 0.9596957, gradient norm = 0.0027486 (50 iterations in 1.055s)
[t-SNE] Iteration 550: error = 0.9220737, gradient norm = 0.0021657 (50 iterations in 1.031s)
[t-SNE] Iteration 600: error = 0.8991240, gradient norm = 0.0016105 (50 iterations in 1.014s)
[t-SNE] Iteration 650: error = 0.8837481, gradient norm = 0.0012414 (50 iterations in 1.142s)
[t-SNE] Iteration 700: error = 0.8728597, gradient norm = 0.0010010 (50 iterations in 1.102s)
[t-SNE] Iteration 750: error = 0.8647388, gradient norm = 0.0008529 (50 iterations in 1.025s)
[t-SNE] Iteration 800: error = 0.8587740, gradient norm = 0.0006868 (50 iterations in 1.113s)
[t-SNE] Iteration 850: error = 0.8542212, gradient norm = 0.0005571 (50 iterations in 1.122s)
[t-SNE] Iteration 900: error = 0.8502351, gradient norm = 0.0004771 (50 iterations in 1.111s)
[t-SNE] Iteration 950: error = 0.8468751, gradient norm = 0.0004645 (50 iterations in 1.120s)
[t-SNE] Iteration 1000: error = 0.8434035, gradient norm = 0.0004388 (50 iterations in 1.143s)
[t-SNE] KL divergence after 1000 iterations: 0.843403

trace1 = go.Scatter3d(
    x=tsne3d[:,0],
    y=tsne3d[:,1],
    z=tsne3d[:,2],
    mode='markers',
    marker=dict(
        sizemode='diameter',
        color = y,
        colorscale = 'Portland',
        colorbar = dict(title = 'duplicate'),
        line=dict(color='rgb(255, 255, 255)'),
        opacity=0.75
    )
)

data=[trace1]
layout=dict(height=800, width=800, title='3d embedding with engineered features')
fig=dict(data=data, layout=layout)
py.iplot(fig, filename='3DBubble')

tfidf weighted word-vectors

# avoid decoding problems
df = pd.read_csv(raw_data_file_path)
# encode questions to unicode https://stackoverflow.com/a/6812069
df['question1'] = df['question1'].apply(lambda x: str(x))
df['question2'] = df['question2'].apply(lambda x: str(x))
df.head()
id qid1 qid2 question1 question2 is_duplicate
0 0 1 2 What is the step by step guide to invest in sh... What is the step by step guide to invest in sh... 0
1 1 3 4 What is the story of Kohinoor (Koh-i-Noor) Dia... What would happen if the Indian government sto... 0
2 2 5 6 How can I increase the speed of my internet co... How can Internet speed be increased by hacking... 0
3 3 7 8 Why am I mentally very lonely? How can I solve... Find the remainder when [math]23^{24}[/math] i... 0
4 4 9 10 Which one dissolve in water quikly sugar, salt... Which fish would survive in salt water? 0
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
# merge texts
questions = list(df['question1']) + list(df['question2'])

tfidf = TfidfVectorizer(lowercase=False, )
tfidf.fit_transform(questions)

# dict key:word and value:tf-idf score
word2tfidf = dict(zip(tfidf.get_feature_names_out(), tfidf.idf_))
  • After we find TF-IDF scores, we convert each question to a weighted average of word2vec vectors by these scores.
  • here we use a pre-trained GLOVE model which comes free with "Spacy". https://spacy.io/usage/vectors-similarity
  • It is trained on Wikipedia and therefore, it is stronger in terms of word semantics.
!python -m spacy download en_core_web_lg
!python -m spacy download en_core_web_sm
!python -m spacy download en_core_web_md
!python -m spacy download en
Collecting en-core-web-lg==3.4.1
  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.4.1/en_core_web_lg-3.4.1-py3-none-any.whl (587.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 587.7/587.7 MB 1.5 MB/s eta 0:00:0000:0100:04
Requirement already satisfied: spacy<3.5.0,>=3.4.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from en-core-web-lg==3.4.1) (3.4.4)
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (4.61.0)
Requirement already satisfied: pathy>=0.3.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (0.10.1)
Requirement already satisfied: requests<3.0.0,>=2.13.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2.26.0)
Requirement already satisfied: setuptools in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (65.5.0)
Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (0.10.1)
Requirement already satisfied: numpy>=1.15.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (1.21.6)
Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (3.0.11)
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2.0.7)
Requirement already satisfied: packaging>=20.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (20.9)
Requirement already satisfied: typer<0.8.0,>=0.3.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (0.6.1)
Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (1.0.4)
Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (3.0.8)
Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2.0.8)
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (1.0.9)
Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (3.3.0)
Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (1.10.2)
Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2.4.5)
Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (6.3.0)
Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (8.1.6)
Requirement already satisfied: jinja2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (3.0.3)
Requirement already satisfied: pyparsing>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from packaging>=20.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (3.0.9)
Requirement already satisfied: typing-extensions>=4.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (4.3.0)
Requirement already satisfied: certifi>=2017.4.17 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2022.9.14)
Requirement already satisfied: idna<4,>=2.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (3.4)
Requirement already satisfied: charset-normalizer~=2.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2.0.12)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (1.26.12)
Requirement already satisfied: blis<0.8.0,>=0.7.8 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (0.7.9)
Requirement already satisfied: confection<1.0.0,>=0.0.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (0.0.3)
Requirement already satisfied: click<9.0.0,>=7.1.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (8.1.3)
Requirement already satisfied: MarkupSafe>=2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from jinja2->spacy<3.5.0,>=3.4.0->en-core-web-lg==3.4.1) (2.1.1)
Installing collected packages: en-core-web-lg
Successfully installed en-core-web-lg-3.4.1
✔ Download and installation successful
You can now load the package via spacy.load('en_core_web_lg')
Collecting en-core-web-sm==3.4.1
  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.1/en_core_web_sm-3.4.1-py3-none-any.whl (12.8 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.8/12.8 MB 3.3 MB/s eta 0:00:0000:0100:01m
Requirement already satisfied: spacy<3.5.0,>=3.4.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from en-core-web-sm==3.4.1) (3.4.4)
Requirement already satisfied: setuptools in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (65.5.0)
Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.0.4)
Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.8)
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.0.7)
Requirement already satisfied: packaging>=20.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (20.9)
Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.10.2)
Requirement already satisfied: typer<0.8.0,>=0.3.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.6.1)
Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (6.3.0)
Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.11)
Requirement already satisfied: requests<3.0.0,>=2.13.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.26.0)
Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.4.5)
Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (8.1.6)
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (4.61.0)
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.0.9)
Requirement already satisfied: pathy>=0.3.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.10.1)
Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.0.8)
Requirement already satisfied: numpy>=1.15.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.21.6)
Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.3.0)
Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.10.1)
Requirement already satisfied: jinja2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.3)
Requirement already satisfied: pyparsing>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from packaging>=20.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.9)

Requirement already satisfied: typing-extensions>=4.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (4.3.0)
Requirement already satisfied: idna<4,>=2.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.4)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.26.12)
Requirement already satisfied: certifi>=2017.4.17 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2022.9.14)
Requirement already satisfied: charset-normalizer~=2.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.0.12)
Requirement already satisfied: confection<1.0.0,>=0.0.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.0.3)
Requirement already satisfied: blis<0.8.0,>=0.7.8 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.7.9)
Requirement already satisfied: click<9.0.0,>=7.1.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (8.1.3)
Requirement already satisfied: MarkupSafe>=2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from jinja2->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.1.1)
Installing collected packages: en-core-web-sm
Successfully installed en-core-web-sm-3.4.1
✔ Download and installation successful
You can now load the package via spacy.load('en_core_web_sm')
Collecting en-core-web-md==3.4.1
  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.4.1/en_core_web_md-3.4.1-py3-none-any.whl (42.8 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.8/42.8 MB 4.1 MB/s eta 0:00:0000:0100:01m
Requirement already satisfied: spacy<3.5.0,>=3.4.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from en-core-web-md==3.4.1) (3.4.4)
Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2.4.5)
Requirement already satisfied: numpy>=1.15.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (1.21.6)
Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (1.10.2)
Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (3.0.11)
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (1.0.9)
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (4.61.0)
Requirement already satisfied: pathy>=0.3.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (0.10.1)
Requirement already satisfied: jinja2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (3.0.3)
Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2.0.8)
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2.0.7)
Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (6.3.0)
Requirement already satisfied: typer<0.8.0,>=0.3.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (0.6.1)
Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (3.3.0)
Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (1.0.4)
Requirement already satisfied: packaging>=20.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (20.9)
Requirement already satisfied: requests<3.0.0,>=2.13.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2.26.0)
Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (8.1.6)
Requirement already satisfied: setuptools in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (65.5.0)
Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (0.10.1)
Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (3.0.8)
Requirement already satisfied: pyparsing>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from packaging>=20.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (3.0.9)
Requirement already satisfied: typing-extensions>=4.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (4.3.0)
Requirement already satisfied: certifi>=2017.4.17 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2022.9.14)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (1.26.12)
Requirement already satisfied: idna<4,>=2.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (3.4)
Requirement already satisfied: charset-normalizer~=2.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2.0.12)
Requirement already satisfied: confection<1.0.0,>=0.0.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (0.0.3)
Requirement already satisfied: blis<0.8.0,>=0.7.8 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (0.7.9)
Requirement already satisfied: click<9.0.0,>=7.1.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (8.1.3)
Requirement already satisfied: MarkupSafe>=2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from jinja2->spacy<3.5.0,>=3.4.0->en-core-web-md==3.4.1) (2.1.1)

Installing collected packages: en-core-web-md
Successfully installed en-core-web-md-3.4.1
✔ Download and installation successful
You can now load the package via spacy.load('en_core_web_md')
⚠ As of spaCy v3.0, shortcuts like 'en' are deprecated. Please use the
full pipeline package name 'en_core_web_sm' instead.
Collecting en-core-web-sm==3.4.1
  Using cached https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.1/en_core_web_sm-3.4.1-py3-none-any.whl (12.8 MB)
Requirement already satisfied: spacy<3.5.0,>=3.4.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from en-core-web-sm==3.4.1) (3.4.4)
Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.3.0)
Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.0.8)
Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.10.2)
Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.4.5)
Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (8.1.6)
Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.10.1)
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.0.7)
Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (6.3.0)
Requirement already satisfied: jinja2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.3)
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (4.61.0)
Requirement already satisfied: requests<3.0.0,>=2.13.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.26.0)
Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.8)
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.0.9)
Requirement already satisfied: packaging>=20.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (20.9)
Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.0.4)
Requirement already satisfied: pathy>=0.3.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.10.1)
Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.11)
Requirement already satisfied: setuptools in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (65.5.0)
Requirement already satisfied: numpy>=1.15.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.21.6)
Requirement already satisfied: typer<0.8.0,>=0.3.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.6.1)
Requirement already satisfied: pyparsing>=2.0.2 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from packaging>=20.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.0.9)
Requirement already satisfied: typing-extensions>=4.1.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (4.3.0)
Requirement already satisfied: charset-normalizer~=2.0.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.0.12)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (1.26.12)
Requirement already satisfied: idna<4,>=2.5 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (3.4)
Requirement already satisfied: certifi>=2017.4.17 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2022.9.14)
Requirement already satisfied: confection<1.0.0,>=0.0.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.0.3)
Requirement already satisfied: blis<0.8.0,>=0.7.8 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from thinc<8.2.0,>=8.1.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (0.7.9)
Requirement already satisfied: click<9.0.0,>=7.1.1 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (8.1.3)
Requirement already satisfied: MarkupSafe>=2.0 in /Users/harshmaheshwari/miniconda3/envs/jupyter/lib/python3.8/site-packages (from jinja2->spacy<3.5.0,>=3.4.0->en-core-web-sm==3.4.1) (2.1.1)
✔ Download and installation successful
You can now load the package via spacy.load('en_core_web_sm')

# en_vectors_web_lg, which includes over 1 million unique vectors.
nlp = spacy.load('en_core_web_lg')
# vecs1 = []
# # https://github.com/noamraph/tqdm
# # tqdm is used to print the progrss bar
# for qu1 in tqdm(list(df['question1'])):
#     doc1 = nlp(qu1) 
#     # 384 is the number of dimensions of vectors 
#     mean_vec1 = np.zeros([len(doc1), len(doc1[0].vector)])
#     for word1 in doc1:
#         # word2vec
#         vec1 = word1.vector
#         # fetch df score
#         try:
#             idf = word2tfidf[str(word1)]
#         except:
#             idf = 0
#         # compute final vec
#         mean_vec1 += vec1 * idf
#     mean_vec1 = mean_vec1.mean(axis=0)
#     vecs1.append(mean_vec1)
# df['q1_feats_m'] = list(vecs1)
x=nlp('man')
len(x.vector)
300
vecs2 = []
for qu2 in tqdm(list(df['question2'])):
    doc2 = nlp(qu2) 
    mean_vec1 = np.zeros([len(doc1), len(doc2[0].vector)])
    for word2 in doc2:
        # word2vec
        vec2 = word2.vector
        # fetch df score
        try:
            idf = word2tfidf[str(word2)]
        except:
            #print word
            idf = 0
        # compute final vec
        mean_vec2 += vec2 * idf
    mean_vec2 = mean_vec2.mean(axis=0)
    vecs2.append(mean_vec2)
df['q2_feats_m'] = list(vecs2)
  0%|                                                                                                                                                                                                                              | 0/404290 [00:00<?, ?it/s]

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/var/folders/tz/6dwwl4_92xv0hspfrgj59nch0000gp/T/ipykernel_2083/1614740358.py in <cell line: 2>()
      2 for qu2 in tqdm(list(df['question2'])):
      3     doc2 = nlp(qu2)
----> 4     mean_vec1 = np.zeros([len(doc1), len(doc2[0].vector)])
      5     for word2 in doc2:
      6         # word2vec

NameError: name 'doc1' is not defined
#prepro_features_train.csv (Simple Preprocessing Feartures)
#nlp_features_train.csv (NLP Features)
if os.path.isfile('nlp_features_train.csv'):
    dfnlp = pd.read_csv("nlp_features_train.csv",encoding='latin-1')
else:
    print("download nlp_features_train.csv from drive or run previous notebook")

if os.path.isfile('df_fe_without_preprocessing_train.csv'):
    dfppro = pd.read_csv("df_fe_without_preprocessing_train.csv",encoding='latin-1')
else:
    print("download df_fe_without_preprocessing_train.csv from drive or run previous notebook")
df1 = dfnlp.drop(['qid1','qid2','question1','question2'],axis=1)
df2 = dfppro.drop(['qid1','qid2','question1','question2','is_duplicate'],axis=1)
df3 = df.drop(['qid1','qid2','question1','question2','is_duplicate'],axis=1)
df3_q1 = pd.DataFrame(df3.q1_feats_m.values.tolist(), index= df3.index)
df3_q2 = pd.DataFrame(df3.q2_feats_m.values.tolist(), index= df3.index)
# dataframe of nlp features
df1.head()
# data before preprocessing 
df2.head()
# Questions 1 tfidf weighted word2vec
df3_q1.head()
# Questions 2 tfidf weighted word2vec
df3_q2.head()
print("Number of features in nlp dataframe :", df1.shape[1])
print("Number of features in preprocessed dataframe :", df2.shape[1])
print("Number of features in question1 w2v  dataframe :", df3_q1.shape[1])
print("Number of features in question2 w2v  dataframe :", df3_q2.shape[1])
print("Number of features in final dataframe  :", df1.shape[1]+df2.shape[1]+df3_q1.shape[1]+df3_q2.shape[1])
# storing the final features to csv file
if not os.path.isfile('final_features.csv'):
    df3_q1['id']=df1['id']
    df3_q2['id']=df1['id']
    df1  = df1.merge(df2, on='id',how='left')
    df2  = df3_q1.merge(df3_q2, on='id',how='left')
    result  = df1.merge(df2, on='id',how='left')
    result.to_csv('final_features.csv')

Machine Learning Models

Reading data from file and storing into sql table

#Creating db file from csv
if not os.path.isfile('train.db'):
    disk_engine = create_engine('sqlite:///train.db')
    start = dt.datetime.now()
    chunksize = 180000
    j = 0
    index_start = 1
    for df in pd.read_csv('final_features.csv', names=['Unnamed: 0','id','is_duplicate','cwc_min','cwc_max','csc_min','csc_max','ctc_min','ctc_max','last_word_eq','first_word_eq','abs_len_diff','mean_len','token_set_ratio','token_sort_ratio','fuzz_ratio','fuzz_partial_ratio','longest_substr_ratio','freq_qid1','freq_qid2','q1len','q2len','q1_n_words','q2_n_words','word_Common','word_Total','word_share','freq_q1+q2','freq_q1-q2','0_x','1_x','2_x','3_x','4_x','5_x','6_x','7_x','8_x','9_x','10_x','11_x','12_x','13_x','14_x','15_x','16_x','17_x','18_x','19_x','20_x','21_x','22_x','23_x','24_x','25_x','26_x','27_x','28_x','29_x','30_x','31_x','32_x','33_x','34_x','35_x','36_x','37_x','38_x','39_x','40_x','41_x','42_x','43_x','44_x','45_x','46_x','47_x','48_x','49_x','50_x','51_x','52_x','53_x','54_x','55_x','56_x','57_x','58_x','59_x','60_x','61_x','62_x','63_x','64_x','65_x','66_x','67_x','68_x','69_x','70_x','71_x','72_x','73_x','74_x','75_x','76_x','77_x','78_x','79_x','80_x','81_x','82_x','83_x','84_x','85_x','86_x','87_x','88_x','89_x','90_x','91_x','92_x','93_x','94_x','95_x','96_x','97_x','98_x','99_x','100_x','101_x','102_x','103_x','104_x','105_x','106_x','107_x','108_x','109_x','110_x','111_x','112_x','113_x','114_x','115_x','116_x','117_x','118_x','119_x','120_x','121_x','122_x','123_x','124_x','125_x','126_x','127_x','128_x','129_x','130_x','131_x','132_x','133_x','134_x','135_x','136_x','137_x','138_x','139_x','140_x','141_x','142_x','143_x','144_x','145_x','146_x','147_x','148_x','149_x','150_x','151_x','152_x','153_x','154_x','155_x','156_x','157_x','158_x','159_x','160_x','161_x','162_x','163_x','164_x','165_x','166_x','167_x','168_x','169_x','170_x','171_x','172_x','173_x','174_x','175_x','176_x','177_x','178_x','179_x','180_x','181_x','182_x','183_x','184_x','185_x','186_x','187_x','188_x','189_x','190_x','191_x','192_x','193_x','194_x','195_x','196_x','197_x','198_x','199_x','200_x','201_x','202_x','203_x','204_x','205_x','206_x','207_x','208_x','209_x','210_x','211_x','212_x','213_x','214_x','215_x','216_x','217_x','218_x','219_x','220_x','221_x','222_x','223_x','224_x','225_x','226_x','227_x','228_x','229_x','230_x','231_x','232_x','233_x','234_x','235_x','236_x','237_x','238_x','239_x','240_x','241_x','242_x','243_x','244_x','245_x','246_x','247_x','248_x','249_x','250_x','251_x','252_x','253_x','254_x','255_x','256_x','257_x','258_x','259_x','260_x','261_x','262_x','263_x','264_x','265_x','266_x','267_x','268_x','269_x','270_x','271_x','272_x','273_x','274_x','275_x','276_x','277_x','278_x','279_x','280_x','281_x','282_x','283_x','284_x','285_x','286_x','287_x','288_x','289_x','290_x','291_x','292_x','293_x','294_x','295_x','296_x','297_x','298_x','299_x','300_x','301_x','302_x','303_x','304_x','305_x','306_x','307_x','308_x','309_x','310_x','311_x','312_x','313_x','314_x','315_x','316_x','317_x','318_x','319_x','320_x','321_x','322_x','323_x','324_x','325_x','326_x','327_x','328_x','329_x','330_x','331_x','332_x','333_x','334_x','335_x','336_x','337_x','338_x','339_x','340_x','341_x','342_x','343_x','344_x','345_x','346_x','347_x','348_x','349_x','350_x','351_x','352_x','353_x','354_x','355_x','356_x','357_x','358_x','359_x','360_x','361_x','362_x','363_x','364_x','365_x','366_x','367_x','368_x','369_x','370_x','371_x','372_x','373_x','374_x','375_x','376_x','377_x','378_x','379_x','380_x','381_x','382_x','383_x','0_y','1_y','2_y','3_y','4_y','5_y','6_y','7_y','8_y','9_y','10_y','11_y','12_y','13_y','14_y','15_y','16_y','17_y','18_y','19_y','20_y','21_y','22_y','23_y','24_y','25_y','26_y','27_y','28_y','29_y','30_y','31_y','32_y','33_y','34_y','35_y','36_y','37_y','38_y','39_y','40_y','41_y','42_y','43_y','44_y','45_y','46_y','47_y','48_y','49_y','50_y','51_y','52_y','53_y','54_y','55_y','56_y','57_y','58_y','59_y','60_y','61_y','62_y','63_y','64_y','65_y','66_y','67_y','68_y','69_y','70_y','71_y','72_y','73_y','74_y','75_y','76_y','77_y','78_y','79_y','80_y','81_y','82_y','83_y','84_y','85_y','86_y','87_y','88_y','89_y','90_y','91_y','92_y','93_y','94_y','95_y','96_y','97_y','98_y','99_y','100_y','101_y','102_y','103_y','104_y','105_y','106_y','107_y','108_y','109_y','110_y','111_y','112_y','113_y','114_y','115_y','116_y','117_y','118_y','119_y','120_y','121_y','122_y','123_y','124_y','125_y','126_y','127_y','128_y','129_y','130_y','131_y','132_y','133_y','134_y','135_y','136_y','137_y','138_y','139_y','140_y','141_y','142_y','143_y','144_y','145_y','146_y','147_y','148_y','149_y','150_y','151_y','152_y','153_y','154_y','155_y','156_y','157_y','158_y','159_y','160_y','161_y','162_y','163_y','164_y','165_y','166_y','167_y','168_y','169_y','170_y','171_y','172_y','173_y','174_y','175_y','176_y','177_y','178_y','179_y','180_y','181_y','182_y','183_y','184_y','185_y','186_y','187_y','188_y','189_y','190_y','191_y','192_y','193_y','194_y','195_y','196_y','197_y','198_y','199_y','200_y','201_y','202_y','203_y','204_y','205_y','206_y','207_y','208_y','209_y','210_y','211_y','212_y','213_y','214_y','215_y','216_y','217_y','218_y','219_y','220_y','221_y','222_y','223_y','224_y','225_y','226_y','227_y','228_y','229_y','230_y','231_y','232_y','233_y','234_y','235_y','236_y','237_y','238_y','239_y','240_y','241_y','242_y','243_y','244_y','245_y','246_y','247_y','248_y','249_y','250_y','251_y','252_y','253_y','254_y','255_y','256_y','257_y','258_y','259_y','260_y','261_y','262_y','263_y','264_y','265_y','266_y','267_y','268_y','269_y','270_y','271_y','272_y','273_y','274_y','275_y','276_y','277_y','278_y','279_y','280_y','281_y','282_y','283_y','284_y','285_y','286_y','287_y','288_y','289_y','290_y','291_y','292_y','293_y','294_y','295_y','296_y','297_y','298_y','299_y','300_y','301_y','302_y','303_y','304_y','305_y','306_y','307_y','308_y','309_y','310_y','311_y','312_y','313_y','314_y','315_y','316_y','317_y','318_y','319_y','320_y','321_y','322_y','323_y','324_y','325_y','326_y','327_y','328_y','329_y','330_y','331_y','332_y','333_y','334_y','335_y','336_y','337_y','338_y','339_y','340_y','341_y','342_y','343_y','344_y','345_y','346_y','347_y','348_y','349_y','350_y','351_y','352_y','353_y','354_y','355_y','356_y','357_y','358_y','359_y','360_y','361_y','362_y','363_y','364_y','365_y','366_y','367_y','368_y','369_y','370_y','371_y','372_y','373_y','374_y','375_y','376_y','377_y','378_y','379_y','380_y','381_y','382_y','383_y'], chunksize=chunksize, iterator=True, encoding='utf-8', ):
        df.index += index_start
        j+=1
        print('{} rows'.format(j*chunksize))
        df.to_sql('data', disk_engine, if_exists='append')
        index_start = df.index[-1] + 1
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create_connection(db_file):
    """ create a database connection to the SQLite database
        specified by db_file
    :param db_file: database file
    :return: Connection object or None
    """
    try:
        conn = sqlite3.connect(db_file)
        return conn
    except Error as e:
        print(e)

    return None


def checkTableExists(dbcon):
    cursr = dbcon.cursor()
    str = "select name from sqlite_master where type='table'"
    table_names = cursr.execute(str)
    print("Tables in the databse:")
    tables =table_names.fetchall() 
    print(tables[0][0])
    return(len(tables))
read_db = 'train.db'
conn_r = create_connection(read_db)
checkTableExists(conn_r)
conn_r.close()
# try to sample data according to the computing power you have
if os.path.isfile(read_db):
    conn_r = create_connection(read_db)
    if conn_r is not None:
        # for selecting first 1M rows
        # data = pd.read_sql_query("""SELECT * FROM data LIMIT 100001;""", conn_r)

        # for selecting random points
        data = pd.read_sql_query("SELECT * From data ORDER BY RANDOM() LIMIT 100001;", conn_r)
        conn_r.commit()
        conn_r.close()
# remove the first row 
data.drop(data.index[0], inplace=True)
y_true = data['is_duplicate']
data.drop(['Unnamed: 0', 'id','index','is_duplicate'], axis=1, inplace=True)
data.head()

4.2 Converting strings to numerics

# after we read from sql table each entry was read it as a string
# we convert all the features into numaric before we apply any model
cols = list(data.columns)
for i in cols:
    data[i] = data[i].apply(pd.to_numeric)
    print(i)
# https://stackoverflow.com/questions/7368789/convert-all-strings-in-a-list-to-int
y_true = list(map(int, y_true.values))

4.3 Random train test split( 70:30)

X_train,X_test, y_train, y_test = train_test_split(data, y_true, stratify=y_true, test_size=0.3)
print("Number of data points in train data :",X_train.shape)
print("Number of data points in test data :",X_test.shape)
print("-"*10, "Distribution of output variable in train data", "-"*10)
train_distr = Counter(y_train)
train_len = len(y_train)
print("Class 0: ",int(train_distr[0])/train_len,"Class 1: ", int(train_distr[1])/train_len)
print("-"*10, "Distribution of output variable in train data", "-"*10)
test_distr = Counter(y_test)
test_len = len(y_test)
print("Class 0: ",int(test_distr[1])/test_len, "Class 1: ",int(test_distr[1])/test_len)
# This function plots the confusion matrices given y_i, y_i_hat.
def plot_confusion_matrix(test_y, predict_y):
    C = confusion_matrix(test_y, predict_y)
    # C = 9,9 matrix, each cell (i,j) represents number of points of class i are predicted class j

    A =(((C.T)/(C.sum(axis=1))).T)
    #divid each element of the confusion matrix with the sum of elements in that column

    # C = [[1, 2],
    #     [3, 4]]
    # C.T = [[1, 3],
    #        [2, 4]]
    # C.sum(axis = 1)  axis=0 corresonds to columns and axis=1 corresponds to rows in two diamensional array
    # C.sum(axix =1) = [[3, 7]]
    # ((C.T)/(C.sum(axis=1))) = [[1/3, 3/7]
    #                           [2/3, 4/7]]

    # ((C.T)/(C.sum(axis=1))).T = [[1/3, 2/3]
    #                           [3/7, 4/7]]
    # sum of row elements = 1

    B =(C/C.sum(axis=0))
    #divid each element of the confusion matrix with the sum of elements in that row
    # C = [[1, 2],
    #     [3, 4]]
    # C.sum(axis = 0)  axis=0 corresonds to columns and axis=1 corresponds to rows in two diamensional array
    # C.sum(axix =0) = [[4, 6]]
    # (C/C.sum(axis=0)) = [[1/4, 2/6],
    #                      [3/4, 4/6]] 
    plt.figure(figsize=(20,4))

    labels = [1,2]
    # representing A in heatmap format
    cmap=sns.light_palette("blue")
    plt.subplot(1, 3, 1)
    sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Confusion matrix")

    plt.subplot(1, 3, 2)
    sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Precision matrix")

    plt.subplot(1, 3, 3)
    # representing B in heatmap format
    sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Recall matrix")

    plt.show()

4.4 Building a random model (Finding worst-case log-loss)

# we need to generate 9 numbers and the sum of numbers should be 1
# one solution is to genarate 9 numbers and divide each of the numbers by their sum
# ref: https://stackoverflow.com/a/18662466/4084039
# we create a output array that has exactly same size as the CV data
predicted_y = np.zeros((test_len,2))
for i in range(test_len):
    rand_probs = np.random.rand(1,2)
    predicted_y[i] = ((rand_probs/sum(sum(rand_probs)))[0])
print("Log loss on Test Data using Random Model",log_loss(y_test, predicted_y, eps=1e-15))

predicted_y =np.argmax(predicted_y, axis=1)
plot_confusion_matrix(y_test, predicted_y)

4.4 Logistic Regression with hyperparameter tuning

alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.

# read more about SGDClassifier() at http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
# ------------------------------
# default parameters
# SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, 
# shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, 
# class_weight=None, warm_start=False, average=False, n_iter=None)

# some of methods
# fit(X, y[, coef_init, intercept_init, …]) Fit linear model with Stochastic Gradient Descent.
# predict(X)    Predict class labels for samples in X.

#-------------------------------
# video link: 
#------------------------------


log_error_array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='l2', loss='log', random_state=42)
    clf.fit(X_train, y_train)
    sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(X_train, y_train)
    predict_y = sig_clf.predict_proba(X_test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))

fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()


best_alpha = np.argmin(log_error_array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
clf.fit(X_train, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(X_train, y_train)

predict_y = sig_clf.predict_proba(X_train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(X_test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
predicted_y =np.argmax(predict_y,axis=1)
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)

4.5 Linear SVM with hyperparameter tuning

alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.

# read more about SGDClassifier() at http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
# ------------------------------
# default parameters
# SGDClassifier(loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, 
# shuffle=True, verbose=0, epsilon=0.1, n_jobs=1, random_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, 
# class_weight=None, warm_start=False, average=False, n_iter=None)

# some of methods
# fit(X, y[, coef_init, intercept_init, …]) Fit linear model with Stochastic Gradient Descent.
# predict(X)    Predict class labels for samples in X.

#-------------------------------
# video link: 
#------------------------------


log_error_array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='l1', loss='hinge', random_state=42)
    clf.fit(X_train, y_train)
    sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(X_train, y_train)
    predict_y = sig_clf.predict_proba(X_test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))

fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()


best_alpha = np.argmin(log_error_array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='l1', loss='hinge', random_state=42)
clf.fit(X_train, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(X_train, y_train)

predict_y = sig_clf.predict_proba(X_train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(X_test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
predicted_y =np.argmax(predict_y,axis=1)
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)

4.6 XGBoost

import xgboost as xgb
params = {}
params['objective'] = 'binary:logistic'
params['eval_metric'] = 'logloss'
params['eta'] = 0.02
params['max_depth'] = 4

d_train = xgb.DMatrix(X_train, label=y_train)
d_test = xgb.DMatrix(X_test, label=y_test)

watchlist = [(d_train, 'train'), (d_test, 'valid')]

bst = xgb.train(params, d_train, 400, watchlist, early_stopping_rounds=20, verbose_eval=10)

xgdmat = xgb.DMatrix(X_train,y_train)
predict_y = bst.predict(d_test)
print("The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
predicted_y =np.array(predict_y&gt;0.5,dtype=int)
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)

hyperparameter tuning

RandomsearchCV with vectorizer as TF-IDF W2V to reduce the log-loss.