Skip to content

Dimensionality Reduction

from IPython.core.display import HTML
def css_styling():
    styles = open("Assets/css/custom.css", "r").read()
    return HTML(styles)
css_styling()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
import warnings
warnings.filterwarnings('ignore')

Load Data

train_file_path = 'https://raw.githubusercontent.com/wehrley/Kaggle-Digit-Recognizer/master/train.csv'
df = pd.read_csv(train_file_path)
labels = df['label']
data = df.drop("label",axis=1)
print("the shape of data = ", data.shape)
df.head(5)
the shape of data =  (42000, 784)

label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 ... pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 pixel781 pixel782 pixel783
0 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

5 rows × 785 columns

idx = 22
plt.figure(figsize=(4,4))
grid_data = data.iloc[idx].to_numpy().reshape(28,28)  # reshape from 1d to 2d pixel array
plt.imshow(grid_data, interpolation = "none", cmap = "gray")
plt.show()
print(f' label corresponding to the image is {labels[idx]}')
No description has been provided for this image
 label corresponding to the image is 2

2D Visualization Using PCA

Data-preprocessing: Standardizing the data

from sklearn.preprocessing import StandardScaler
standardized_data = StandardScaler().fit_transform(data)
print(standardized_data.shape)
(42000, 784)

#find the co-variance matrix which is : A^T * A
sample_data = standardized_data

# matrix multiplication using numpy
covar_matrix = np.matmul(sample_data.T , sample_data)

print ( "The shape of variance matrix = ", covar_matrix.shape)
The shape of variance matrix =  (784, 784)

# finding the top two eigen-values and corresponding eigen-vectors 
# for projecting onto a 2-Dim space.

from scipy.linalg import eigh 

# the parameter 'eigvals' is defined (low value to heigh value) 
# eigh function will return the eigen values in asending order
# this code generates only the top 2 (782 and 783) eigenvalues.
values, vectors = eigh(covar_matrix, eigvals=(782,783))

print("Shape of eigen vectors = ",vectors.shape)
print(values)

#vectors[:,0] represents the eigen vector corresponding to the 2nd eigen value.(First column in the vectors matrix)
#vectors[:,1] represents the eigen vector correspondign to the 1st eigen value.(Second column in the vectors matrix)

#Note : Eigen values are arranged in ascending order so the Eigen vectors too.


# converting the eigen vectors into (2,d) shape for ease of computation which we do it later.
vector = vectors.T

print("Updated shape of eigen vectors = ",vector.shape)
# Here, vectors[0] represent the eigen vector corresponding to the 2nd eigen value.
# Here, vectors[1] represent the eigen vector corresponding to the 1st eigen value.


#For sanity check.
print((vector[0] == vectors[:,0]).all())
print((vector[1] == vectors[:,1]).all())

#Now, we need to swap the rows of the vector matrix such that the first row corresponds to the eigen vector with the largest eigen value and the second row corresponds to the eigen vector with the second largest eigen value.

vector[[0,1]]=vector[[1,0]]
Shape of eigen vectors =  (784, 2)
[1222652.44613786 1709211.41082575]
Updated shape of eigen vectors =  (2, 784)
True
True

# projecting the original data onto the eigen basis.
# Basically, we form a matrix with the eigen vectors in row order. Then, we do a matrix-vector multiplication between the matrix we formed and all the data vectors.

new_coordinates = np.matmul(vector, sample_data.T)

print (" resultant new data points' shape ", vector.shape, "X", sample_data.T.shape," = ", new_coordinates.shape)
 resultant new data points' shape  (2, 784) X (784, 42000)  =  (2, 42000)

# appending label to the 2d projected data
new_coordinates = np.vstack((new_coordinates, labels)).T

# creating a new data frame for ploting the labeled points.
dataframe = pd.DataFrame(data=new_coordinates, columns=("1st_principal", "2nd_principal", "label"))
dataframe.head()
1st_principal 2nd_principal label
0 -5.140478 -5.226445 1.0
1 19.292332 6.032996 0.0
2 -7.644503 -1.705813 1.0
3 -0.474207 5.836139 4.0
4 26.559574 6.024818 0.0
# ploting the 2d data points with seaborn
sn.FacetGrid(dataframe, hue="label", size=6).map(plt.scatter, '1st_principal', '2nd_principal').add_legend()
<seaborn.axisgrid.FacetGrid at 0x7f79560d5d00>
No description has been provided for this image
sn.scatterplot(x="1st_principal",y="2nd_principal",legend="full",hue="label",data=dataframe)
<AxesSubplot:xlabel='1st_principal', ylabel='2nd_principal'>
No description has been provided for this image

PCA using Scikit-Learn

from sklearn import decomposition
pca = decomposition.PCA()

# the number of components = 2
pca.n_components = 2
pca_data = pca.fit_transform(sample_data)

# pca_reduced will contain the 2-d projects of simple data
print("shape of pca_reduced.shape = ", pca_data.shape)

# attaching the label for each 2-d data point 
pca_data = np.vstack((pca_data.T, labels)).T

# creating a new data fram which help us in ploting the result data
pca_df = pd.DataFrame(data=pca_data, columns=("1st_principal", "2nd_principal", "label"))
sn.FacetGrid(pca_df, hue="label", size=6).map(plt.scatter, '1st_principal', '2nd_principal').add_legend()
plt.show()
shape of pca_reduced.shape =  (42000, 2)

No description has been provided for this image

PCA for dimensionality redcution (not for visualization)

# PCA for dimensionality redcution (non-visualization)

pca.n_components = 784
pca_data = pca.fit_transform(sample_data)

percentage_var_explained = pca.explained_variance_ / np.sum(pca.explained_variance_);

cum_var_explained = np.cumsum(percentage_var_explained)

# Plot the PCA spectrum
plt.figure(1, figsize=(6, 4))

plt.clf()
plt.plot(cum_var_explained, linewidth=2)
plt.axis('tight')
plt.grid()
plt.xlabel('n_components')
plt.ylabel('Cumulative_explained_variance')
plt.show()

# If we take 200-dimensions, approx. 90% of variance is expalined.
No description has been provided for this image

t-SNE using Scikit-Learn

# TSNE

from sklearn.manifold import TSNE

data_1000 = standardized_data.copy() #[0:1000,:]
labels_1000 = labels.copy() #[0:1000]

model = TSNE(n_components=2, random_state=0)
# configuring the parameteres
# the number of components = 2
# default perplexity = 30
# default learning rate = 200
# default Maximum number of iterations for the optimization = 1000

tsne_data = model.fit_transform(data_1000)


# creating a new data frame which help us in ploting the result data
tsne_data = np.vstack((tsne_data.T, labels_1000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "label"))

# Ploting the result of tsne
sn.FacetGrid(tsne_df, hue="label", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.show()
No description has been provided for this image
model = TSNE(n_components=2, random_state=0, perplexity=50)
tsne_data = model.fit_transform(data_1000) 

# creating a new data fram which help us in ploting the result data
tsne_data = np.vstack((tsne_data.T, labels_1000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "label"))

# Ploting the result of tsne
sn.FacetGrid(tsne_df, hue="label", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.title('With perplexity = 50')
plt.show()
No description has been provided for this image
model = TSNE(n_components=2, random_state=0, perplexity=50,  n_iter=5000)
tsne_data = model.fit_transform(data_1000) 

# creating a new data fram which help us in ploting the result data
tsne_data = np.vstack((tsne_data.T, labels_1000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "label"))

# Ploting the result of tsne
sn.FacetGrid(tsne_df, hue="label", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.title('With perplexity = 50, n_iter=5000')
plt.show()
No description has been provided for this image
model = TSNE(n_components=2, random_state=0, perplexity=2)
tsne_data = model.fit_transform(data_1000) 

# creating a new data fram which help us in ploting the result data
tsne_data = np.vstack((tsne_data.T, labels_1000)).T
tsne_df = pd.DataFrame(data=tsne_data, columns=("Dim_1", "Dim_2", "label"))

# Ploting the result of tsne
sn.FacetGrid(tsne_df, hue="label", size=6).map(plt.scatter, 'Dim_1', 'Dim_2').add_legend()
plt.title('With perplexity = 2')
plt.show()
No description has been provided for this image